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This paper continues the study of direct gauge theory of the Poincar6 group Plo- 
The meanings and implications of transformations induced by the local action 
of Plo are studied, and transformation rules for all field quantities are derived 
for the local action of Plo in a sufficiently small neighborhood of the identity. 
These results lead directly to a system of fundamental partial differential 
equations that are both necessary and sufficient for invariance of the "free field" 
Lagrangian density. Homogeneity arguments and the classical theory of 
invariants are used to obtain the most general "free field" Lagrangian density. 
Gauge conditions are shown to imply coordinate conditions, and an algebraic 
system of antiexact gauge conditions is implemented. The underlying Minkowski 
space, M4, and the resulting Riemann-Cartan space, U4, become attached at 
their "centers," as do their respective frame and coframe bundles. Weak con- 
straints of vanishing torsion are studied. All field quantities are shown to be 
determined in terms of the compensating l-forms for the Lorentz sector alone 
provided an explicit system of integrability conditions is satisfied. Field equations 
of the Einstein type are shown to result. 

1. I N T R O D U C T I O N  

A direct gauge theory of the Poincar~ group,  P~o, was presented in a 
previous commun ica t i on  (Edelen,  1985a). This paper  will be referred to as 

! and  equat ions  will be cited from I by hyphena t ion  with ! (equat ion  37 of 
I will be writ ten 1-37). 

The basic  idea in I was the realization of  P~o as a matrix Lie group of 
au tomorphisms  of an affine set in a f ive-dimensional  vector space so that 
the Yang-Mi l l s  constructs of  min imal  rep lacement  and  min ima l  coupl ing 
could be used without  modification,  This fairly s imple -minded  procedure  
leads to a system of compensa t ing  fields of 1-forms W ~ for the local act ion 
of the Lorentz sector L(4, R) and  ~b i for the semidirect  product  act ion of 
the t rans la t ion  group T(4). The field equat ions  for the T(4) compensa t ing  
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fields were driven by current 3-forms that obtained from momentum-energy 
3-forms of the matter fields under minimal replacement and by self-sources 
determined by the free field Lagrangian density. Further, the field equations 
for the compensating fields of the L(4, R) sector could be decoupled in the 
sense that the gauge momentum energy currents did not contribute an orbital 
part to the spin currents. 

Noting that minimal replacement applied to the basis 1-forms d x  i on 
the underlying Minkowski space, M4, gave distortion 1-forms B ~, the 
differential system constructed from the B's gave D B  i =  yi, where the E's 
are the 2-forms of Cartan torsion of the differential system. Minimal replace- 
ment applied to the line element of M4 gave a well-defined metric tensor 
and its associated differential concomitants. Minimal replacement thus led 
to fields on M4 that define all relevant structure associated with a Riemann- 
Cartan space U4, but with a number of essential differences from work 
previously reported in the literature. These differences are primarily due to 
the occurrence of both the T(4) and the L(4, R) compensating fields in the 
distortion 1-forms, and that the distortion 1-forms play the same roles as 
the coframes in previous work where they are identified with the compensat- 
ing fields for the T(4) sector alone. 

The differences between the direct gauge theory of the Poincar6 group 
reported in I and previously published gauge theories of gravity and spin 
are sufficiently prominent that further analysis seems both useful and 
necessary. A summary of relevant results from I is given in Section 2 so 
that this paper will be relatively self-contained. Section 3 studies the meaning 
and implications of transformations induced by the local action of Plo. In 
particular, the transformation rules for all field quantities are derived for 
local transformations of P10 in a sufficiently small neighborhood of the 
identity (infinitesimal transformations). These results provide the basis for 
obtaining a system of fundamental partial differential equations in Section 
4 whose solutions determine the most general free field Lagrangian density 
that is invariant under local action of P10- Section 5 obtains the general 
solution of these equations by simple homogeneity arguments and the 
classical theory of invariants. With these results out of the way, Section 6 
shows that coordinate conditions and gauge conditions are equivalent and 
implements a system of antiexact gauge conditions. These gauge conditions 
are used in Section 7 in conjunction with the weak constraints of vanishing 
Cartan torsion to show that equations of the Einstein-type result. 

2. DIRECT POINCARI~ GAUGE THEORY 

Pertinent results from the direct gauge theory of the Poincar6 group, 
Plo = L(4, R) ~" T(4), are summarized in this section. 



Direct Gauging of the Poincar4 Group. II 1093 

Let M4 be Minkowski space with the standard coordinate cover {x~[1 <- 
i - 4}, volume 4-form/z, and metric tensor h 0. Local action of Plo generates 
the transformations 

'x i= Lj (xk)xJ  + t i (x  k) (1) 

where L is a smooth position-dependent Lorentz transformation matrix and 
P, 1 -< i - 4 are smooth functions. A system of canonical parameters for the 
action of Plo is denoted by {u s, ui[1 -< a -< 6, 1 -< i -< 4} and the corresponding 
fields of Yang-Mills compensating 1-forms are { W ~ (xk), q5 ~(xk)}. The local 
action of L(4, R) is compensated for by the W's while the local semidirect 
product action of T(4) is compensated by the qS's. 

Realization of Plo as a subgroup of GL(5,  R )  that maps an affine set 
in 115 into itself gives rise to the gauge covariant derivative 

Dx = d x +  r x +  co (2) 

where 

r = w ~ L  (3) 

is the 1-form valued connection matrix for the L(4, R) component and 

= ~iei (4) 

is the 1-form valued connection matrix for the semidirect product action 
of T(4). Here {lull -< a -<6} is a basis for the matrix Lie algebra of L(4, R) 
and {e~[1 - i -< 4} is a basis for T(4). The corresponding curvature quantities 
are 

0 = 0~L, f~ = f/ie/ (5) 

where 

0 '~ = d W  ~" + C~svW t3 ^ W V / 2  (6) 

12 i = dgo~ + C~j  ~ ^ 4) j (7) 

Let ~ denote the operation of minimal replacement. We then have 

~ ( d x ' )  = D x ' =  B '  (8) 

where 

B ' = B ~ d x  j, B j = 6 j +  W'~I~kXk+C~j (9) 

are the distortion 1-forms for the Poincar6 group. They serve to define the 
system of  fundamental coframes for the theory. This is made evident from 

dS 2 = ./tt( ho dx'  dx  j) = g,,,,, dx m dx n (10) 

_ i j g~. - B , .h~B.  (11) 
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The duals of the distortion 1-forms are defined by 

bi ~ B j = 3~, bi = b~Ok 

where 

and 

l j b l k  = 6 k 

(12) 

(13) 

(14) 

L ~A = O L /  Oy A, 

G g  = = o v / o z  

H ~  = - H ~  = (0 y/oo )l , 
Tj  = LiAy 2 -  ' 6j L, 

(18) 

y a  = . / i A ( ( a , ~ A )  (19) 

s t  = (o v/oC)lo,~ (20) 

s'~ = (o y /o  W7)lo,~ (21) 

Tj = TjBb~IXk (22) 

through use of the following notation: 

Ixi = Oi ~ t x, IX~j = Oi .J IXj = -ix~i 

B = det(B}) ~ 0 

Thus {bill-< i_<4} is a basis for T(M4) and we have 
"" i mn " g'J = b ,. h ha., ij i g gjk = ak (15) 

The distortion 1-forms also give rise to the Cartan torsion of the differential 
system generated by the distortion 1-forms through the relations 

D B  i = E  i (16) 

The explicit evaluation is 
~ i  ot i " = 0 lo~jXJq'-~'~ i. (17) 

Minimal replacement and minimal coupling give the action 4-form 
~ ( E I X ) +  VIX = ( L B +  V)IX, where 

~___~(X i, ~ A ,  Oixi fa  ) 

is the Lagrangian for the matter fields ~a ,  and 

V(x ' ,  WT,  e j ,  O F, : ~ )  

(denoted as 17" in I) is a scalar density valued function of the indicated 
arguments that is invariant under the local action of Pao- Field equations 
are then computed in the standard way as Euler-Lagrange equations for 
the Lagrangian density L B  + V. 

The reader is referred to I for the field equations of the matter fields 
since they are not directly relevant to the considerations of this paper; they 
do not involve the "free field" Lagrangian density V. Variations of the 
action with respect to the ~b fields and the W fields lead to the field equations 
for the compensating gauge fields. These equations are most easily written 
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where T i are the gauge momentum-energy 3-forms of the matter fields (they 
obtain from minimal replacement applied to the 3-forms of momentum- 
energy of the matter fields). Variation with respect to the &'s gives the field 
equations 

/j i 
d { G k l X i j }  - W ~ l ~ k  ^ {O~/x 0} = - Tk + Sk/xi, 1 --< k-< 4 (23) 

Finally, variation with respect to the W's gives 

d { H ~ l x i j }  - W'YC~,~ ^ {H~tx~j} 
i k A B 

( B b k L A / z ~ ) M , ~ B ~  + ( S ~  ,k  , , , ,~ ,  

__ B k l m k  ij ^ {Gm/x~}, 1-<c~-<6 (24) 

Here, the M's  are the explicit representation matrices for the induced action 
of the six infinitesimal generating transformations of L(4, R) acting on the 
matter fields. 

3. FUNDAMENTAL TRANSFORMATION RELATIONS 

Local action of the gauge group Plo o n  M 4 gives 

' x  i = L } ( x k ) x  j + t i ( X  k) (25) 

Since the four functions t i may be chosen arbitrarily, the local action of 
Plo induces the class of all smooth transformations of the x's (i.e., the 
Lorentz part can be absorbed into the translation part). It would thus appear 
that the Lorentz part becomes lost as soon as Plo acts locally. This is not 
the case as we now proceed to show. 

The distortion 1-forms have the gauge transformation law (see 1-33) 

'B = LB (26) 

When this is written out in component form, we have 

, i , m L j B J k d x  k B . , d  x = 

and hence use of (25) gives 

, i i k o x m  (27) 
B j  =- L k B m  O,x) 

Similarly, since the b's are the inverses of the B's, the b's have the explicit 
gauge transformation laws 

--1 
' b  k = L ~ b 7  0 ' x k  (28) 

Ox m 



1096 Edelen 

These formulas show that the lower index on the B's and the upper index 
on the b's have the tensor law of transformation under arbitrary coordinate 
transformations generated by the local action of T(4). On the other hand, 
the upper index on the B's and the lower index on the b's undergo pure 
gauge transformations that are generated by the local Lorentz matrix L(x k) 
and its inverse, respectively. Thus, both the local T(4) and the local L(4, R) 
parts are represented in the transformation laws for the coframes and frames 
induced by minimal replacement. 

The results just noted have far-reaching consequences. It is natural to 
define the images of the induced metric tensor and its inverse by 

'gkm----,~i,_,k,,ijt. '~Jom, ,gkm = ,b fhU,b ,~  (29) 

in view of  the group property of Plo. When the above transformation 
formulas are substituted into (29), and we use 

- 1  --1 
i j n = h m n  L , n h o L ,  = hmn , L m h  ~j L j  (30) 

we obtain 

Ox 'n Ox" O~x i 6~x j 
'gc . . ,gO = gr,,, (31) 

v = gin,, O'X' O'X j '  OX m OX" 

The metric tensor and its inverse participate in the general coordinate 
transformations that result from the local action of T(4), but are invariant 
with respect to the local action of L(4, R). This is just as it should be, 
however, if the metric tensor and its inverse are to play a role similar to 
that in general relativity. 

There is another aspect of these relations that should be noted. The 
definitions of  the image g's given by (29) use the components of  the metric 
tensor on M4 for both the original and the image g's. This may be viewed 
as a statement that the original geometric structure on M 4  does not partici- 
pate in the general coordinate transformations generated by the local action 
of T(4). This, in turn, says that the metric structure represented by the g's 
is the metric structure of a new space /-/4 that arises out of M4 by minimal 
replacement, but is distinct from M4. We may thus view the space M4 as 
an immutable, four dimensional, fiat space that is a reference space for the 
structures and fields that arise through minimal replacement. Two spaces 
are thus necessarily involved. The distinct structures and interplays that 
arise through use of this viewpoint have many facets in common with 
bimetric theories (Rosen, 1963, 1980). 

We confine attention for the remainder of this section to the properties 
of  local Poincar6 transformations in an infinitesimal neighborhood of the 
identity. To this end, let {Au ~, hu i] 1 --< a <-- 6, 1 --< i <-- 4} be a system of position 
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dependent  canonical parameters in an appropriately chosen infinitesimal 
neighborhood of u ~ = 0, u ~ = 0. Only quantities of  first order in these small 
quantities will be retained. Equalities that are satisfied to first order will be 
denoted with the symbol - .  Under these conditions, (25) reduce to 

~ X  ~ X i o~ i " -~  +Au l,~jxJ + A u  ~ 

Accordingly, we have 

d , x ~  ~_ d x  ~ + A ~ k d x  k, 

and hence 

(32) 

A~=Ok (Au'~)l~jx~ J+Au'~l,~k+Ok' (AU') (33) 

'/z ----- (1 + Akk)/z (34) 

Under  local action of P10, the results obtained in I show that 

T = LUL -1 - dL L -1 

' ~  = Lto - ' F t  - d t  

'0 = LOL 1 ,  ' ~  = LX 

when (3) is used, (35) shows that we have 

' W  '~ ~- W '~ - d A u  '~ + Au~C~3~, W ~" 

Expanding in terms of the appropriate bases for 1-forms gives us 

' W•  d ' x '  = ( - W ;  - OjAu  '~ + A u O C ~ ,  W ~ )  d # .  

However, 

, W 7  d , x  i , • i i ~- W~ ( d x  + a k  d x  k) 

by (33) ,and  

ct i ~ a i 
W i A k -  W i A k  

Combining the various terms, it follows that 

' wT= wT + A w7 

a w ;  = -oj a .  ~ + au~c~, w f -  w7 a~ 

Noting that 

i i c* i Lj--  ~ j+Au l~j 

similar arguments give 

'6~ = 6~+ a6~, '0~--- 0~+a0~ 
,~k k k 

-~Xu+AX 0 

(35) 

(36) 

(37) 

(38)  

(39) 

(40) 



1098 Edelen 

where 

A 6 J  k = ( m u a 0 5  ik - -  m U i W ~ ) l J  i - - O k a U  j - -  05JA  ik 

A ~ k i j  : - -  a ~ , r n , k  ~ ' k  m k m a u  2. 0 t=,,,-2.~,,, Aj --~,nj Ai 

(41) 

(42) 

(43) 

4. INVARIANCE CONDITIONS 

The only theoretical restriction on the choice of the free field Lagrangian 
is that it lead to a free field action 4-form V/~ that is invariant under the 
local action of/91o; that is, 

V( 'x ,  'W, '05, '0, '~)'/z = V(x ,  W, 05, O, ?~)tz (44) 

In view of  the group property, satisfaction of  (44) for all elements of Plo 
in a neighborhood of the identity will be both necessary and sufficient to 
guarantee satisfaction of (44) for all local Poincar6 transformations. When 
(32), (34), (38), and (40) are used, we obtain 

vA +(a,v)Zxx'+S  AW -S a05 + o H ~ A O ~ j + G ~  A Z k = o  (45) 

When the various A quantities are evaluated by the formulas given in the 
previous section, a page long expression results that is linear, homogeneous 
in the Au's and their first derivatives. Since this expression must be satisfied 
for all smooth evaluations of the Au's and their derivatives, the coefficient 
of each Au and of each derivative must vanish separately. 

The coefficient of Au i gives 

0 = O i V -  S k W~ l~  (46) 

while the Au ~ terms lead to the requirements 

05il~k) O=(OiV)12jxJ+ sv(i IV}13 C~t3 ~ - wir il.j) + sk(05iklJ~, - j i 

+ H k J ( r z  " at~ _ ti ar i T 
'~ a~ t . ' k j  "o~k V ij - -  l a j O  ki ) 

nm j k k i k i + G k  ( ~ n m l ~ , j - E i m l = ~ - X f l ~ . , )  (47) 

From the terms involving 0~ Au ~, we have 

, ~_ ~ j j ,~u~ka~ _ , ~ j , ~ k  (48) 0 =  V a S r - S T W r  S~(t~r+05r)-,.11.,/ Urk z,~..-JkZ-Jrj 

while the terms involving 0~ Au p give us 

r r 83 ,  W i - 8 J 0 5  i - - ~ " "  T V i k  g.,~Ok~.qj }pro x (49) O : _ S p _ ~ { V ~ i _  r Y r j ~ l . y r k t a 7  _ _ , 3 g - ~ r j v k  i m 

Equations (46)-(49) are the conditions that any free field Lagrangian for 
the P~o gauge theory must satisfy. 
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There is an important result that obtains immediately from (48) and 
(49). Elimination of the common terms between these two equations gives 
the relations 

r r i j Sp = Si lpjx (50) 

The S's were shown in I to be self-sources for the ~ fields and the W fields 
[see (23), (24) and the definitions (20), (21)]. Further, the decoupling of 
momentum-energy and spin currents given in I gave the decoupled spin 
equations (24) in which the self sources occur only in the combination 

L ( s ia  - k  m i  = l~mx Sk)tz, (51) 

When (50) is substituted into (51), all self-source terms in the spin equations 
vanish identically. It thus follows that local Plo-gauge invariance of  the free 
field Lagrangian leads to identically zero self-source spin currents[ 

There is another important implication of (50). If these relations are 
put back into (48) and we use (9), we have 

S;B{ + 2H~kO~k + 2G~Z~ = V6; (52) 

Remembering that the S's, H's,  and G's are derivatives of V with respect 
to the qS's, O's, and E's, respectively, we see that (52) is a first-order partial 
differential equation for the determination of V as a function of these 
arguments. We note however that it is the B's rather than the ~b's that 
multiply the S's in (52). Further, it follows from (9) that 

T*rct t i  k 4~ = B~- ~ -  wj ,~kx (53) 

and hence the 4~'s can be eliminated in favor of  the B's with no loss of 
generality. We therefore use (53) to set 

~'(x, W, B, 0, E) = V(x, W, 6, O, 5".) (54) 

With this notation, we have 

- -m rn 
s k  = 0 C.'/oB~ = o V / o 4 ~  = S~ (55) 

H~ =/4~,  G~ = ( ~  (56) 

r  II7 a Ik  aiV=OiV+ ok ,, j ,~i (57) 

= ~ * ~ t ~ j x  (58) 

When (50) and (55) are substituted into (58), we have 

0 - S~ = 019/0 W~' (59) 

Similarly, when the above results are substituted into (46), we obtain 

0 = 0,9 (60) 
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It thus follows from (59) and (60) that Plo-gauge invariance can only obtain 
for 

V= V(B~, OF, E~) (61) 

which is a considerable reduction in the number of possible arguments. 
Further, and of greater significance is the fact that the surviving arguments, 
namely, the B's, the 0's, and the ~'s all transform linearly and 
homogeneously under gauge transformations. 

The reduced form of the free field Lagrangian given by (61) is such 
that two of the systems of invariance conditions are satisfied identically. 
Those not identically satisfied are 

-s j -sk ~ ( z~  r (62) S} Br + 2H~, Ork +'~ ~ j x ;  k~'''k'o ---- 

- -k  ~ j  i m i j j i  
dpkl~i-- ~b il~k) + S j ( W k l ~ i l ~ m x  + f f t k J r r ' ~  a ~  i v i v �9 ~ v t ' ~ ' k j - -  l~koa-- l~jOk~) 

- -r im j k + G k  (~,~ml~j--~,kmli~ k i --E,,l~m) = 0  (63) 

5. FREE FIELD LAGRANGIANS 

The problem of finding all free field Lagrangian for Plo gauge theory 
is that of constructing all solutions 

- -  i c* k 
V(Bj ,  O,j, Eij) 

of the system of first-order, quasilinear partial differential equations (62), 
(63). If we set s = r and sum over the repeated index in (62), we obtain 

--r j -- rk T -- rj k S j B r +  2 H ~  Org + 2 G k ~ , r j = 4  V (64) 

where {S, H, G} are the derivatives of 17" with respect to {B, 0, ~}, respec- 
tively. This equation is of the form 

(xOx + 2yOy + 2zOz)f  = 4 f  

which has the general solution 

f = x 4 ~ ( y x  -2, zx  -2 ) 

Thus, since the correspondence is {x, y, z}: {B, 0, ~}, we need to construct 
quantities that are homogeneous of degree 4 in the B's, quantities that are 
jointly homogeneous of degree - 2  in the B's and of degree 1 in the 0's, 
and quantities that are jointly homogeneous of degree - 2  in the B's and 
of degree 1 in the E's. 

The only scalar density valued function of the B's that is homogeneous 
of degree 4 in the B's is 

B = det(B~-) = [-det(gq)] 1/2 (65) 
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Thus since any scalar density is the product of a scalar with any one specific 
scalar density, we may set 

~,'= BII(B~, OF, ~k)  (66) 

where II is a P~o-invariant scalar-valued function of its indicated arguments. 
The search for II's is significantly simplified by noting that the previous 

discussion requires II to depend on its arguments only through functions 
that are either jointly homogeneous of degree - 2 r  in the B's and 
homogeneous of  degree r in the 0, s, or jointly homogeneous of degree - 2 r  
in the B's and homogeneous of degree r in the E's. Now, b~ are homogeneous 
of degree -1  in the B's since they are the components of the inverse of B~. 
Further, the b's serve to define the natural frame vectors 

bi = ~0j (67) 

for the Plo gauge theory. They may therefore be used to construct scalars 
from the 2-forms 0 ~ and y k by inner multiplication. 

With these ideas in mind, we construct the quantities 

UjC~ ~ im c~ h b,,~bj_JO i . . . .  = h b,,b~ Our (68) 

which are jointly homogeneous of degree - 2  in the B's and homogeneous 
of degree 1 in the O's. If  we set 

A~ = T Ti~ l k 
t-Jk totj (69) 

and use (28), (30), and (37), a direct calculation shows that 

- 1  
m m i A, = L~ A~ L~ ('A = LAL -1) (70) 

under/ '1o gauge transformations. Thus, the A's transform as scalars under 
the general coordinate transformations generated by local action of T(4), 
while the local action of L(4, R) obtains through the adjoint action of the 
associated Lorentz matrix of functions, L. It is thus a simple matter to 
construct the following list of P~o invariant scalar functions: 

t3t' 1 = tr(A), a2 = tr(A2), cr = tr(A3), or4 = tr(A 4) (71) 

Any other P~o invariant scalar-valued function of A can be expressed as a 
function of  the four invariants (71) by the Cayley-Hamilton theorem. 

Although we have the homogeneous quadratic invariant c~2, there are 
others that can be constructed from the U's that are not expressible in terms 
of o/2 and the square of  aa. In order to obtain these additional invariants, 
we construct the quantities 

E~= l f P C t l r q ~ l i  Im  ap b q ~ a  ~ ~i Tm ~q  ~p "~m't~j=g g OaqVbplaml,Sj (72) 
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Direct calculat ion shows that  

- 1  

'E~ = Li,.E; L~ ( 'E = LEL  -1) (73) 

under  P~o gauge transformations.  We thus have the following new list o f  
P~o invariants: 

/31 = tr(E), /32 = tr(E2), /33 = tr(E3), /34 = tr(E 4) (74) 

In  addi t ion to these, there are the mixed invariants 

/35 = tr(AE),  /36 = tr(A2E), /37 = tr(AE2) �9 �9 �9 (75) 

I f  we do the same thing starting with the E's,  we are led to consider  
the quantities 

i = 1.~J l~k'~2 i Nuv = b. 2 b~ 2 E / ~'u~'v-~jk (76) 

Under  local action o f  Pao, (28) and (37) show that 

- 1  - 1  

'Niuv = LP~LqLjNJpq (77) 

Accordingly,  the N ' s  are invariant under  coordinate  t ransformat ions  gener- 
ated by the local act ion o f  T(4), while t ransforming under  the local action 
o f  L(4, R)  according to (77). The t ransformat ion law (77) immediately 
suggests that  we look at 

--1 

Fu = N~v, 'Fu = L~Fj (78) 

It is then an easy matter  to construct  the Pio invariant  scalars 

P~ = Fih~Fj ,  P2 = F iA jhJkFk  

- -  i j k m  = F i E j h J k F k  (79) P3 - F i A } A k h  Fro, P4 

P5 = F i A j E J k h  kmFm, " " " 

There are, however,  further  invariants that  can be constructed out  o f  the 
E's.  To this end, we set 

R~ = ~ri ~ r k  l , . ,up l , , vqI~  - - ~ u p ~ v q . r  "r l* �9 ~o,, pq . . . . . .  kj - ~s ~ ,-,~o,.,pq-kj (80) 

in which case we have 

- 1  

'R j  = L ~ R ~ L y  (81) 
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We thus have the system of Plo invariants 

71 = tr(R), 72 = tr(R2), �9 �9 �9 

75 = tr(RA), 

~1 = FiRjhJkFk, 
i j k m  Ca = FiRjAkh Fro, 

74 = tr(R 4) 

7 6  = t r (RE) , . . .  

~2 : F~R~RJkh k"F,,, 
i j k m  ~4= FiR~Ekh Fro,. . .  

(82) 

If we exclude invariants that involve permutation symbols, as required 
by parity considerations, standard results from invariance theory show that 
any / lo  invariant scalar-valued function II of the B's, O's, and ~'s is 
expressible as 

[ I  = I I ( 0 1 1 ,  . . . , [ 3 1 ,  �9 �9 �9 , P l ,  �9 �9 �9 , 7 1 ,  �9 �9 �9 , ~ 1 , - -  " )  ( 8 3 )  

It is then a straightforward but laborious job to check that any free field 
Lagrangian density IIB satisfies the invariance conditions (62) and (63). 

Free field Lagrangian densities of primary interest are those that are 
at most quadratic in the field tensors (quadratic in the O's and E's). Examin- 
ing the list of invariants given above, we see that such Lagrangian densities 
are of the form 

= B(kla1-1- k2(al)2 + k3a2+ k4131 q- kspl + k671) (84) 

Here, the k's are coupling constants that are chosen so that the physical 
dimensions of each term in (84) are those of action per unit spatial volume 
per unit time. Of the various terms that appear in (84), 011 has the evaluation 

__ / ~ [ u h v ] ~ o L  l k  l . ,mi  
01 1 - -  v m O k  V u v t a i * *  

which is similar to the linear invariant used by Kibble (1961) and Sciama 
(1962). Noting that L(4, R) is semisimple, we have 

where C~o are the components of the Cartan-Killing metric on L(4, R). Thus 

[31 : gab giJO~,C,,130~bj 

and 

ab u v ~ ' i  ~ j  
"171 : g g 2 " a u 2 " b v F l i j  

which are similar to quadratic free field Lagrangians used in standard 
Yang-Mills theory. The remaining terms in (89) do not appear to have been 
used in previous studies. 
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6. GAUGE CONDITIONS,  COORDINATE CONDITIONS,  
AND THE ANTIEXACT GAUGE 

The field equations, constitutive relations, and the frames and coframes 
of  the Plo gauge theory are gauge covariant. Accordingly, we are free to 
apply local Poincar6 transformations and their accompanying gauge trans- 
formations in order to achieve certain simplifications. In particular, we can 
effect a gauge transformation such that (35) and (36) may be used to restrict 
the Yang-Mills compensating 1-forms in useful and often simplifying ways. 
Restrictions obtained in this way are known as gauge conditions in direct 
analogy with classic electromagnetic theory. Although the more familiar 
gauge conditions (Lorentz, Coulomb) are differential, there are strictly 
algebraic gauge conditions that often prove to be useful. A previous publica- 
tion (Edelen, 1981) has shown that the antiexact gauge conditions, which 
are algebraic, lead to marked simplifications in solving the field equations 
and to intrinsic geometric simplifications that prove to be particularly useful 
in understanding certain subtilities of  the Poincar6 gauge theory. 

Direct Poincar6 gauge theory starts with the Minkowski space M4, which 
is globally star shaped with respect to any point in M4 as center (see Edelen, 
1985b). We may therefore apply a global translation so that the center may 
be identified with the origin of  the standard Cartesian coordinate cover of 
M4. This construction provides us with a well defined radius vector field X = 
xiOi. If a is any exterior form on M4, the linear homotopy operator, H, is 
defined by (see Edelen, 1985b) 

Hog(x m) : X ~ Ol(l~Xm)l~--1 dh (85) 

The notation used in (85) is best*explained for the case of a 2-form where 

a ( , ~ x  m) = % ( h x " ) h  d x  ~ ̂  h d #  

The linear homotopy operator verifies the identity 

a = d H a  + H d a  (86) 

for any exterior forms on a star-shaped region (on M4), and hence any 
exterior form a has an exact part 

a~ = d H a  

and an antiexact part 

aa = H d a  

Since H is a linear operator, it has a well-defined kernel, 

A = { a  ~ A ( M 4 ) [ H a  = O} 
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and any/3  E A is said to be antiexact. Noting that H2a = 0, the antiexact 
part of any exterior form on M4 is antiexact and any antiexact form is the 
antiexact part  of  some form. Further, A forms a submodule of  A(M4) and 
H inverts d on this submodule (Hda = a for any a E A). The particularly 
nice thing here is that A can also be characterized by 

A = {a E A(M,) IX ~ a = 0, a(0)  -- 0} (87) 

so that antiexact forms are identified through the algebraic conditions 

X J a = 0 (88) 

and the reference value conditions 

a (0) : 0 (89) 

Let F be a matrix of  connection 1-forms for the local action of  L(4, R). 
We have shown in a previous paper  (Edelen, 1981) that we can always find 
a local Lorentz matrix F for which the gauge transformation (35) makes 'F 
antiexact. Further, (36) can be used to make 'to antiexact by choosing 

t = H ( L c o  - T t )  + k = H ( L r  + k 

where k is a constant column matrix. The last equality obtains because 'F 
is antiexact, and hence the module property of  antiexact forms shows that 
'Ft  is antiexact (belongs to ker H) .  With this gauge transformation, we have 
' x = L x + t ,  and hence the image of the origin is given by 'x (0)=t (0) .  
Accordingly, we can achieve 'x(0) = 0 by an appropriate choice of  k [i.e., 
k = -H(Lo~)(0)  = 0]. The new and old coordinate covers may thus be chosen 
so that they agree at the origin, a fact that will assume particular importance 
in just a minute. These considerations also show that implementation of 
the antiexact gauge conditions that obtain by the above procedure may also 
be viewed as imposing an explicit system of coordinate conditions (i.e., an 
explicit choice of  'x in terms of x). The latter are essential in gravitation 
theory, as is well known. 

Having noted these facts, we assume that the gauge transformation 
generated by L and t has been effected so that we may drop the primes. 
The resulting compensating 1-forms W ~ and ~b i will now satisfy the antiexact 
gauge conditions 

X - W ~ = 0, W ~ (0) = 0 (90) 

X -  qS~=O, ~b'(O) = 0  (91) 

Written out in component  form, these conditions become 

x J W ; ( x  m) =0,  xJ~bj(x m ) = 0  (92) 

W~(0) = 0, ~bj(0) = 0 (93) 
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The first set, (92), is a system of explicit algebraic conditions that must be 
satisfied by the fields at each point. The second set, (93), may be viewed as 
selecting reference values of  zero for the fields at the origin. It is useful to note 
in this context that the Yang and Wu (1969) solution of  the free SU(2) gauge 
field equations satisfies (92). 

The antiexact gauge conditions carry particularly useful information. We 
first note that (9) and (13) show that an evaluation at the origin gives 

B~(0) = 6~, b~(0) = 8~ (94) 

and hence 

B'(O)  = d x  i, b,(0) = O, (95) 

The frame fields bi and the coframe fields B ~ induced by minimal replacement 
thus coincide with the natural frame and coframe fields of  M 4 at the origin. In 
addition, (11) and (15) show that 

go(O) = ho, g~(O) = h q (96) 

and hence the metric structure induced by minimal replacement and the metric 
structure of  M4 also agree at the origin. 

Let U4 denote the four-dimensional manifold whose geometric structure 
is that induced by minimal replacement for Plo. The space U4 thus has the 
preferred coordinate cover 'x that is obtained from the coordinate cover of  M4 
by local action of  the element of Plo that achieves the antiexact gauge 
conditions. Since the two coordinate covers agree at the origins, U4 and M4 
may b e viewed as attached to each other at their origins. Further, (95) show that 
the tangent spaces and the cotangent spaces of  U4 and M4 may also be viewed 
as attached at the fibers over the origins. Finally, (96) show that the metric 
structures of  U4 and M4 are  coincident over the origins. Accordingly, we may 
view U4 and its geometric structure as attached to M4 and its geometric 
structure in a natural way. 

Everything in the direct gauge theory of  Plo arises out of Ma and its 
geometry and fields by minimal replacement, the space U4 included. There 
is thus the fundamental question of whether physical space time remains 
M4, or becomes U4. On the surface, either of these two interpretations is 
tenable, even though we are accustomed to think of  gravity as arising from 
the curvature properties of  physical space-time. However, the metric tensor 
defined by (11) can be viewed as a field on M4 from the standpoint of 
Poincar6 gauge theory, and likewise the curvature associated with this metric 
tensor becomes a system of  fields defined over M4. This interpretation is 
not available in general relativity because the physics did not start out in 
Minkowski space and become modified by minimal replacement for Plo on 
Minkowski space. 
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7. VANISHING TORSION AS WEAK CONSTRAINTS 

One of the essential differences between Einstein's gravitation theory 
and the gauge theory of P~o is that minimal replacement of  the gauge theory 
leads to a manifold U4 with both curvature and torsion, while the Einstein 
theory has only curvature. It is thus clear that torsion free solutions of the 
Plo gauge field theory assume particular importance. 

A combination of  (7) and (17) gives the following explicit evaluation 
of  the torsion 2-forms: 

= 0 l,~:x d~i+ qbJ W I~: ̂ (97) 

We are thus interested in those situations in which 

= W l ,~j:  - 0  l,~jx J -  (98) 

that is, 

E i = 0 (99) 

There are two ways in which (99) can be realized. In the first instance, 
(99) are viewed as strong constraints, in which case they must be included 
in the basic variational principle by means of Lagrange multipliers. If  this 
were done, (99) would be enforced for all solutions of the field equations 
and the theory would be identically torsion free, but involve Lagrange 
multipliers for the strong constraints (99). A step as drastic as this seems 
unwarranted at the present time. The second way is to view (99) as restric- 
tions that are used to single out solutions of the field equations with the 
property of  vanishing torsion; that is, (99) are weak constraints that are to 
be applied after the field equations are derived from the basic variational 
principle. It is this latter alternative that we pursue in this section. 

In order that (99) hold, the translation compensating fields ~b i must 
satisfy the exterior differential equations (98). Now, (98) entail the integra- 
bility conditions 

a i 0 l~j^ B j = 0  (100) 

of which only 16 are independent (4-forms of degree 3 on a four-dimensional 
space). Progress from this point on is parffcularly facilitated by use of the 
antiexact gauge. The ~b's and the W's are thus antiexact 1-forms that belong 
to the kernel of the linear homotopy operator H introduced in the previous 
section. Since d / i s  antiexact, &~= Hdcb  ~, and hence (98) gives 

~b ' = - H ( O'~l~jx ')  (101) 

because 

W l~j^ 
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is antiexact by the module property of antiexact forms and hence belongs 
to ker H. Similarly, when (6) is substituted into (101), we obtain 

~ ) i  a i j 
- H ( d W  l~ jx  ) (102) 

Finally, we note that 

and that 

because 

d W ' ~ l i j x  j d (  '~ ' J = W 1 ,~ j x )+  '~ W l ,~ jAdx  ~ 

, , i  j H d (  W l,~jx ) =  W~' l~ jx  j 

a i " W l,~jx j 

is antiexact. When these results are put into (102), we obtain the explicit 
evaluation 

~ i  ot i " o ~ i  
= - W l,~jx j - H (  W l,~j ^ dx  "i) (103) 

The translation compensating fields ~b ~ are thus uniquely determined in 
terms of  the L(4, R) compensating fields W ~ whenever we have solutions 
that are torsion free. 

The first thing to note is that (9) gives 

B ' = d x  i - H ( W ~' 'l,~j A d x  j ) (104) 

Thus, the distortion 1-forms differ from the natural basis elements for 1-forms 
on M4 by antiexact 1-forms that are uniquely determined by the W's that 
compensate for local action of  L(4, R). It thus follows from (11) that the 
metric tensor on U4 is also uniquely determined by the W's. The metric 
differential structure of  U4, including its Riemann curvature tensor, is 
therefore uniquely determined by the compensating 1-forms for the Lorentz 
sector [for L(4, R)]. 

There is an alternative point of view that is also useful here. Combining 
(16) and (99), the conditions for vanishing torsion read 

D B '  = d B '  + W'~ 'l,j^ B j =  0 (105) 

The ideal of  A(M4) that is generated by the distortion 1-forms is thus a 
closed ideal and hence the Frobenius theorem shows that there exists a 
nonsingular matrix A of  functions and a system of independent functions 
{pi(xk))ll-< i-<4} such that 

B i = A~ dp j (106) 
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When this representation is substituted into (11), the metric tensor is 
evaluated by 

U ~ a b 
go = A~hu~ ,4b  O~p Ojp (107) 

Thus, introduction of  new coordinates by xi '=pi(x k) leads to the metric 
tensor 

g ' b  = Aahu~4bU ~ (108) 

with the obvious simplifications. It is of interest to note in this context that 
conditions similar to (105) occur in most treatments of Poincar6 gauge 
theory reported in the literature. 

We now turn to the field equations. It was shown in Section 6 that 
there are no free field Lagrangian densities that are linear in the components 
of •k. Thus (20) and •k = 0 show that 

G~ = 0 (109) 

and that we may put all components of the torsion equal to zero in V = BII 
before evaluating the remaining constitutive relations. Now, the ~b's enter 
only through the distortion 1-forms while II depends on the B's only through 
the b's. Thus (13), the second of (20), and algebraic simplification give us 

i u r r 
S~k = B b ~ ( F I ~ k  - b k O I I / O b u )  (110) 

When these results are substituted into the field equations (23), (24) and 
use is made of (22), the field equations in the absence of  torsion become 

Or[ 
i i r 

T k = H ~ k - b k  - (111) 
Ob7 

d H ~  - v f l  " k A E W Cv.^H~=BlflkLAM,~E~ Ixj (112) 

where we have set 

H~,= u - B  OH H a / z , -  O~) /~  (113) 

Let us first note that the torsion-free condition gives 

H = rI(bj, oF) (114) 

and hence the right-hand sides of (111) depend on the b's and the L(4, R) 
curvatures 0 ~, but not on derivatives of the L(4, R) curvature expressions. 
Thus, since the T's are the components of the gauge momentum energy 
complex, the field equations (111) are of  exactly the same form as Einstein's 
field equations: {momentum energy} = {curvature}. There is thus the strong 
expectation that Einstein's equations for the gravitational field can be 
obtained by appropriate choice of 17. 
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This conclusion may be a little unsettling on first reading, for we are 
accustomed to think of  gravity as described by second-order differential 
equations in terms of the metric tensor as "potential ," while the curvature 
quantities 0 4 contain only first derivatives of the field quantities WL 
However, (11) shows that the metric is quadratic in the W's while we also 
have the additional field equations (112) to solve. In fact, we may look 
upon (111) and (112) as a system of first-order differential equations whose 
combination and elimination will result in the second.order differential 
equations that obtain in the Einstein theory. This situation is similar to 
what happens in electrodynamics where the field equations are first-order 
differential equa t ions  in E and B but result in second-order differential 
equations in terms of the vector potential. 

The simplest way of  understanding the content of the field equations 
(112) is to write them in the equivalent form 

dH,, = WI3C~,~ A H~, + J .  (115) 

where we have used J .  for the spin currents of  the matter field that occur 
on the right-hand side of  (112). Since H~ = d H ( H ~ ) + H ( d H ~ ) ,  where H 
is the linear homotopy operator, (115) is equivalent to the Riemann-Graves 
integral equation 

H,~ = do'~ + H (  Wr A H ,  +J~)  (116) 

where cr,, a re  antiexact 1-form that remain to be determined. With the 
antiexact gauge, W ~ is antiexact and an iteration of (116) together with 
the fact that antiexact forms form a submodule that is the kernel of H give 
u s  

H,~ = do',~ + H (  WoC;,~ a do'~, + Jo,) (117) 

Thus, if the matter fields have no spin current, as in the original Einstein 
theory, we have 

H,, = d(r,~ + H (  W~C~,~ A do',) (118) 

Now, H,, are determined in terms of W ~ and d W  ~ by (113), and hence 
(111) and (118) may be viewed as a system of  integrodifferential equations 
for the determination of  W ~ and o-,. These are the field equations for 
gravitational phenomenae in the P10 gauge theory in those cases in which 
there is direct correspondence with the assumptions of  the Einstein theory. 
Finally, we note that the integrability conditions (100) would seem to 
demand that J~ = 0, because matter fields could be "turned on"  that would 
lead to determinations of the L(4, R) curvatures through (111) and (117) 
that would violate (100). 
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